A Special case of Zykov's theorem and the shifting method

Ivy Yao, Julia Zhou
PRIMES Circle
May 19, 2024

Introduction to Extremal Graph Theory

Extremal graph theory focuses on finding the maximum and minimum possible numbers of occurrences of certain patterns in graphs under various conditions. Study of extremal graph theory began in early $20^{\text {th }}$ century with a theorem of Mantel

Theorem (Mantel (1907))
Every n-vertex, triangle-free graph contains at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Introduction to Extremal Graph Theory

Extremal graph theory focuses on finding the maximum and minimum possible numbers of occurrences of certain patterns in graphs under various conditions. Study of extremal graph theory began in early $20^{\text {th }}$ century with a theorem of Mantel

Theorem (Mantel (1907))
Every n-vertex, triangle-free graph contains at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Notation

K_{r} (clique of size r) is a set of r vertices, such that each pair is connected by an edge.

Introduction to Extremal Graph Theory

Extremal graph theory focuses on finding the maximum and minimum possible numbers of occurrences of certain patterns in graphs under various conditions. Study of extremal graph theory began in early $20^{\text {th }}$ century with a theorem of Mantel

Notation

K_{r} (clique of size r) is a set of r vertices, such that each pair is connected by an edge.

Theorem (Turán (1941))
Let $r \geq 3$ and n be positive integers. Any n-vertex graph which does not contain a K_{r} has at most $\frac{(r-2) n^{2}}{2(r-1)}$ edges.

Problem Statement

Theorem (Zykov 1949)
Let $I>k \geq 2$ be integers. Any n-vertex graph without any K_{l} has at most

$$
\frac{n^{2}}{(I-1)^{2}}\binom{I-1}{k}
$$

copies of K_{k}.

Problem Statement

Theorem (Zykov 1949)
Let $I>k \geq 2$ be integers. Any n-vertex graph without any K_{l} has at most

$$
\frac{n^{2}}{(I-1)^{2}}\binom{I-1}{k}
$$

copies of K_{k}.
We will prove this theorem for $k=3, I=5$ (the general case is similar).
Question
Prove that a K_{5} free graph on n vertices has $\leq \frac{n^{3}}{16}$ triangles.

Symmetrization

Question

Prove that a K_{5}-free graph on n vertices has $\leq \frac{n^{3}}{16}$ triangles.
Notation
Let $t(u)$ be the number of triangles containing vertex u, and $t(u v)$ be the number of triangles containing edge $u v$. Let also $t(G)$ be the number of triangles in a graph G.

Symmetrization

Question

Prove that a K_{5}-free graph on n vertices has $\leq \frac{n^{3}}{16}$ triangles.

Notation

Let $t(u)$ be the number of triangles containing vertex u, and $t(u v)$ be the number of triangles containing edge $u v$. Let also $t(G)$ be the number of triangles in a graph G.

Let $G=(V, E)$ be such that

- G has no K_{5} 's and the most triangles
- Any edge not contained in any triangles can be removed without changing the number of triangles
- Thus, $t(u v) \geq 1$ for all $u v \in E$

Symmetrization

Lemma

For any $u v \notin E, t(u)=t(v)$.

Symmetrization

Lemma

For any $u v \notin E, t(u)=t(v)$.
Consider vertices

u and v such that $u v \notin E$ and $t(u)<t(v)$. Then remove u and replace it with a new vertex v^{\prime}, such that $N\left(v^{\prime}\right)=N(v)$, to create G^{\prime}.

$$
t\left(G^{\prime}\right)=t(G)-t(u)+t(v)>t(G)
$$

Symmetrization

Lemma

For any $u v \notin E, t(u)=t(v)$.
Consider vertices

u and v such that $u v \notin E$ and $t(u)<t(v)$. Then remove u and replace it with a new vertex v^{\prime}, such that $N\left(v^{\prime}\right)=N(v)$, to create G^{\prime}.

$$
t\left(G^{\prime}\right)=t(G)-t(u)+t(v)>t(G)
$$

If G^{\prime} contains a K_{5}, then $N(v)$ contains a K_{4}, so G contained a K_{5}. Thus G^{\prime} is K_{5}-free and has more triangles than G, which is a contradiction.

Symmetrization

Lemma

If $u v, v w \notin E$ then $u w \notin E$.
Consider vertices u, v, w such that $u v, v w \notin E$. Replace u with v^{\prime} and w with $v^{\prime \prime}$, such that $N\left(v^{\prime}\right)=N\left(v^{\prime \prime}\right)=N(v)$, to create G^{\prime}.

Symmetrization

Lemma

If $u v, v w \notin E$ then $u w \notin E$.
Consider vertices u, v, w such that $u v, v w \notin E$. Replace u with v^{\prime} and w with $v^{\prime \prime}$, such that $N\left(v^{\prime}\right)=N\left(v^{\prime \prime}\right)=N(v)$, to create G^{\prime}.

$$
\begin{aligned}
t\left(G^{\prime}\right) & =t(G)-t(u)-t(w)+t(u w)+2 t(v) \\
& =t(G)+t(u w) \\
& >t(G)
\end{aligned}
$$

Symmetrization

Lemma

If $u v, v w \notin E$ then $u w \notin E$.
Consider vertices u, v, w such that $u v, v w \notin E$. Replace u with v^{\prime} and w with $v^{\prime \prime}$, such that $N\left(v^{\prime}\right)=N\left(v^{\prime \prime}\right)=N(v)$, to create G^{\prime}.

$$
\begin{aligned}
t\left(G^{\prime}\right) & =t(G)-t(u)-t(w)+t(u w)+2 t(v) \\
& =t(G)+t(u w) \\
& >t(G)
\end{aligned}
$$

Similarly as before, G^{\prime} must be K_{5}-free, and it has more triangles than G, which is a contradiction.

```
Fact
If an graph G = (V,E) is such that for any uv,vw }\not\inE\mathrm{ we have uw }\not\inE\mathrm{ , then \(G\) must be a complete multipartite graph.
```


Fact

If an graph $G=(V, E)$ is such that for any $u v, v w \notin E$ we have uw $\notin E$, then G must be a complete multipartite graph.

By previous lemma, G is a complete multipartite graph.

Fact

If an graph $G=(V, E)$ is such that for any $u v, v w \notin E$ we have uw $\notin E$, then G must be a complete multipartite graph.

By previous lemma, G is a complete multipartite graph. G is K_{5} free, so it is a 4-partite graph. Let a, b, c, d be the numbers of vertices in 4 parts.

Fact

If an graph $G=(V, E)$ is such that for any $u v, v w \notin E$ we have uw $\notin E$, then G must be a complete multipartite graph.

By previous lemma, G is a complete multipartite graph. G is K_{5} free, so it is a 4-partite graph. Let a, b, c, d be the numbers of vertices in 4 parts.

Triangle count $=a b c+a b d+a c d+b c d$

Fact

If an graph $G=(V, E)$ is such that for any $u v, v w \notin E$ we have uw $\notin E$, then G must be a complete multipartite graph.

By previous lemma, G is a complete multipartite graph. G is K_{5} free, so it is a 4-partite graph. Let a, b, c, d be the numbers of vertices in 4 parts.

Triangle count $=a b c+a b d+a c d+b c d$
K_{5}-free graph on n vertices has $\leq \frac{n^{3}}{16}$ triangles.

$$
\begin{gathered}
\Uparrow \\
\text { For any } a, b, c, d \geq 0 \\
a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16} .
\end{gathered}
$$

Shifting

Question
Show that $a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}$.

Shifting

Question

Show that $a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}$.
If $a=b=c=d$, the equality holds. We can use the shifting method to achieve this condition. Let $M=\frac{a+b+c+d}{4}$ be the mean of a, b, c, d.

Shifting

Question

Show that $a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}$.
If $a=b=c=d$, the equality holds. We can use the shifting method to achieve this condition. Let $M=\frac{a+b+c+d}{4}$ be the mean of a, b, c, d. 1. Pick $a<M<b$.

Shifting

Question

Show that $a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}$.
If $a=b=c=d$, the equality holds. We can use the shifting method to achieve this condition. Let $M=\frac{a+b+c+d}{4}$ be the mean of a, b, c, d.

1. Pick $a<M<b$.
2. $(a, b) \longrightarrow\left(a^{\prime}=a+x, b^{\prime}=b-x\right)$, where $x=\min ((M-a),(b-M))$.

Shifting

Question

Show that $a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}$.
3. After shifting, the LHS increased while the RHS stayed the same.

$$
\begin{aligned}
L H S & =(a+x)(b-x) c+(a+x)(b-x) d+(a+x) c d+(b-x) c d \\
& =a b c+a b d+a c d+b c d+\left(-a x+b x-x^{2}\right)(c+d) \\
& =a b c+a b d+a c d+b c d+(b-a-x)(c+d) x \\
& >a b c+a b d+a c d+b c d
\end{aligned}
$$

$$
R H S=\frac{((a+x)+(b-x)+c+d)^{3}}{16}=\frac{(a+b+c+d)^{3}}{16}
$$

Shifting

Question

Show that $a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}$.
3. After shifting, the LHS increased while the RHS stayed the same.

$$
\begin{aligned}
L H S & =(a+x)(b-x) c+(a+x)(b-x) d+(a+x) c d+(b-x) c d \\
& =a b c+a b d+a c d+b c d+\left(-a x+b x-x^{2}\right)(c+d) \\
& =a b c+a b d+a c d+b c d+(b-a-x)(c+d) x \\
& >a b c+a b d+a c d+b c d
\end{aligned}
$$

$$
R H S=\frac{((a+x)+(b-x)+c+d)^{3}}{16}=\frac{(a+b+c+d)^{3}}{16}
$$

4. Keep shifting until we reach $a=b=c=d$, when LHS $=$ RHS. Because LHS increased and RHS did not, thus at the beginning LHS \leq RHS .

$$
a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}
$$

It is proved that a K_{5} free graph on n vertices has $\leq \frac{n^{3}}{16}$ triangles.
Theorem (Zykov 1949)
Let $I>k \geq 2$ be integers. Any n-vertex graph without any K_{I} has at most

$$
\frac{n^{2}}{(I-1)^{2}}\binom{I-1}{k}
$$

copies of K_{k}.
Thus, We have proved this theorem for $k=3, I=5$.

$$
a b c+a b d+a c d+b c d \leq \frac{(a+b+c+d)^{3}}{16}
$$

It is proved that a K_{5} free graph on n vertices has $\leq \frac{n^{3}}{16}$ triangles.
Theorem (Zykov 1949)
Let $I>k \geq 2$ be integers. Any n-vertex graph without any K_{I} has at most

$$
\frac{n^{2}}{(I-1)^{2}}\binom{I-1}{k}
$$

copies of K_{k}.
Thus, We have proved this theorem for $k=3, I=5$.

Acknowledgments

Thank you to our mentor Tomasz Slusarczyk, and the organizers of PRIMES Circle, Mary Stelow and Marisa R. Gaetz.

